

USAS-R

Status, Current Design & Implications
– Technical –

Fall OEDSA 2010

Dave Smith; SSDT

Disclaimer

● Still early in Development Cycle
● Not fully committed to some choices:

– Database Platforms, likely:
● Oracle
● MS SQL Server
● Open Source: MySQL or PostgreSQL

– OS (Linux, Windows?)

– Distribution Model:
● Installation kit?
● Virtual Applicance?

Migration Strategy (Review)

Redesign Goals

● Primary:

– Reproduce Existing Functionality

– Redesign Data Model
● Will not “port” existing data model
● Simplify Application
● Allow for Future Growth

– Increase Flexibility

– Partial Compatibility with Classic versions

● Secondary

– “Incidental Enhancements”
● Leverage new tools and frameworks
● Improve usability, flexibility and integration

USAS-R Status

● Domain Model
– Most Major Object Types designed

– Import process

– Authorization/Authentication Modules

– SOAP Bridge (Legacy Compatibility)

– USAS Web App connected to USAS-R

● Prototype Reporting Service

Back-end Architecture

Architecture

● Modular based on Lightweight Container
● One District:

– One Database (local or remote)

– One Software Install

– One Server (Virtual Machine)

● Each installation
– Customizable per District

– Modules loaded as needed

● Intended to be “Cloud Ready”

Likely Distribution Model

● SSDT will distribute “Virtual Appliance”
– Linux-based (maybe Windows variation)

– Pre-installed with OS and Container (OSGi?)

– Appliance:
● Prompt for Configuration
● Download modules from SSDT
● Install/create database (local or remote)

– Check for updates, one-click install

Administrative Overhead

● Server per District creates Admin Overhead
● Intend to provide:

– Administrative Console
● List of servers
● Status
● Access to Application Console
● Monitoring Events

– Remote software updates

Auth-n/Auth-z

● Auth-n, multiple sources:
– Local Authentication (database)

– External Authentication (LDAP, ADS, OpenID?)

– Plugin Auth-n modules via Spring

● Auth-z:
– Authorized users mapped to USAS user profile

– Roles in database (not in External source)

– May provide Role mapping from external source

Development Process

● SSDT using “Agile-ish” process:
– No “Big Design Up Front”

– Two Week Iterations (Short plan cycles)

– Design evolves iteratively

– Decisions deferred until “Last Responsible
Moment”

– Continuous Integration/Automated Testing

● Object Oriented Design
– Relational database is side-effect of Model

– Persistence Layer Abstracts Away Database

Higher Levels of Abstraction

● SSDT writes Object Model and Business Logic:

– Java and Groovy

– Passes objects to Persistence layer (no SQL)

– Persistence Layer writes database meta-data and SQL

● Database is a artifact of compiling Object model

● Programmers are

– Aware of database

– But don't (much) care about it

– It's just a place where Objects go to until needed again

– All business logic is in Domain

Database ER Diagram

Frameworks/Languages

● Java VM based

– Java

– Groovy (Dynamic/Meta Language)

● JPA (Persistence)

● Aspects (Aspect Oriented Programming)

– Cross cutting concerns:
● Transactions

● Security

● Logging

● Spring Framework:

– Lightweight Application Container

– IoC/DI (Inversion of Control/Dependency Injection)

– Auth-n/Auth-z

Groovy? Seriously?

● Dynamic/Meta-Programming Language
● Java's answer to Ruby

Java:

 List<Things> things = getListOfThings()
 for (int i = 0; i < things.size(); i++) {
 System.out.println(things[i]);
 }

Groovy:

 def things = getListOfThings()
 things.each {
 println it
 }

Aspect Oriented Programming

● Cross-cutting Concerns
– Security

– Transaction Handling

– Exception Handing

● Avoid Boilerplate code
● Code is modified post-compile-time

 Vendor update(vendor) {

 if (!user.isInRole('VENDOR_UPDATE') {
 Throw new SecurityException(...)
 }

 Transaction tx
 Try {
 tx = transManager.start()

 em.merge(vendor)

 tx.commit()
 } catch (Exception ex) {

 tx.rollback()
} finally {

tx.release()
}

 }

Aspect Example (Without AOP)

 @Transactional
 @Secured('VENDOR_UPDATE')
 Vendor update(vendor) {
 em.merge(vendor)
 }

Aspect Example

● With Annotation-Based Aspects

Example

● Query to get Vendor by ID (returns RowSet)
●

●

●

●

● Equivalent using JPA:

SELECT *
from USAS.VENDOR V
 JOIN USAS.VENDOR_ADDRESS VA ON V.ID = VA.VENDOR_ID
 JOIN USAS.ADDRESS A ON A.ID = VA.ADDRESSES_ID
 JOIN USAS.VENDOR_CUSTOMFIELD VCF ON VCF.VENDOR_ID = V.ID
 JOIN USAS.CUSTOM_FIELDS CFS ON CFS.ID = VCF.CUSTOMFIELDS_ID
 JOIN USAS.CUSTOMFIELD CF ON CF.CUSTOM_FIELDS_ID = CFS.ID
 JOIN USAS.CUSTOMFIELDDEFINITION CFD ON CFD.ID = CF.DEFINITION_ID
 WHERE V.ID = '06751225-8565-4a67-8e09-731882bebfc4'

Vendor vendor = em.get('06751225-8565-4a67-8e09-731882bebfc4',Vendor.class)

Import/Conversion

● Goal
– One-step 100% import from Classic USAS

– All relevant data imported accurately

● Process:
– Full SSWAT Extract on OpenVMS

– USAS-R Import Utility:
● FTP from VMS system (or local file)
● Builds database
● Imports all data

Not Your Father's USAS

● Domain Model will be radically different from
Classic USAS

– Data will be stored and related much differently

– Far more flexible Data Model

● Modularized/Event Driven
– Extensibility

– Customization

Data Model Differences (Example)

● Classic USAS:

– Expenditure & Budget on one Record

– USAS Code on same record and every transaction

● USAS-R:

– Separate Records:
● Expenditure Account
● Budget Account
● USAS Code

– Model will allow:
● Multiple Expenditures per Budget
● But not initially

– Transactions will not store USAS Code

Data Model Differences (Example)

● Classic USAS:

– Purchase Order contains items

– Each Item contains USAS Code

– Multiple accounts per item is simulated in USAS Web App

● USAS-R:

– Purchase Order contains:
● Items
● Charges (with reference to Expenditure Account)

– Charges related to items

– But a Charge could apply to multiple items, or PO

● Allows possibility of charging entire PO
● But not initially

Database ID
● UUID - Universally Unique Ids for primary keys

– “06751225-8565-4a67-8e09-731882bebfc4”

– Unique across database, ITC and state

– Used for internal relationships between tables

– User (should) never see actual ID

● Advantages:

– “SIF-Ready”

– Merges and replication (data warehousing)

– Disconnected operations and REST-ful services

– Possible to identify data type just from ID

● Disadvantages:

– SQL database performance (e.g. indexes can not be clustered)

– May not survive performance testing

Permissions/Roles

● Permission System:

– Software Defined Fine Grained Permissions

– Permissions can grant other permissions

– Hierarchical, example:

● USAS_VENDOR grants:

– USAS_VENDOR_VIEW
– USAS_VENDOR_CREATE
– USAS_VENDOR_DELETE
– USAS_VENDOR_UPDATE
– USAS_VENDOR_REPORT

● Roles

– Roles grant permissions

– User are granted role(s)

– Software or District Defined

Permissions/Roles

● Initial (Legacy) Roles:
– USAS - Simulates “Standard” identifier

– USAS_RO - Simulates “Read-Only” role

– Others to simulate other Classic USAS
Identifiers

● Future:
– District will be able to define roles with

permissions:

– e.g. “SECRETARIES”, “SUPERVISORS”

Custom Fields

● Replaces “User Defined”

● True Custom Fields:

– Types:

● Code, Text, Money, Date
● Possible Types: URL, Attachment, Calculated, etc

– Description

– Help

– Validation (e.g. Code list of values)

● Defined by:

– District

– SSDT

– Third-party vendors

Custom Fields

● Predefined for current User Defined:
– VENDOR_MONEY1

– VENDOR_CODE1, etc

● Some Classic USAS Fields moved to CF:
– Vendor Category

● Will allow code values to be defined

– Requisition Type
● “Template” will be separate field
● Types will be District Defined Custom Field

– Allow district to disable if not using, so User will
not have to see “User Money 1” on screen

Domain Events

● Allows:

– Communication between modules w/ Loose Coupling

– One-to-Many (Broadcast)

● Application will “publish” events:

– Repository Events:

● Create, Update, Delete
● Query, Retrieve

– Business Logic events:

● Budget Adjusted (Increase,Decrease)
● Check Voided

– Exception Events (Unexpected Errors)

– Security Events (Login Failure, Role Granted)

Event Contents

● Events contain:
– Date/Time

– Elapsed Time

– Authenticated User

– Type of Event (Create,Update,...)

– Source of the event (Repository, Security,...)

– Target of the Event (Vendor, PO, ...)

Event Listeners

● Domain Events do nothing unless something's
is listening

● Event Listeners:
– Are notified of events

– Listener determines if event is of interest

– Can Respond to event:
● Cancel transaction
● Process related business logic
● Ignore

Listener Examples

● Listeners might:
– Perform Audit Logging

– Perform validation (budget check)

– Send notification message

– Send message to 3rd Party Application

● Events will be:
– SSDT Defined

– District Defined

– 3rd Party Developer

Custom Event Listeners

● District Defined
● Customize USAS behavior:

– Example #1 (Notification):
● When a Purchase Order is posted
● Where “total” amount is > $10,000
● Send Email to Treasurer

– Example #2 (Custom Validation):
● Vendor is created or updated
● Email address is blank
● Reject transaction and return error message

ODBC is dead, long live...

● Fair Warning:
– ODBC access by end-users will be unlikely

– Replaced by “Reporting Services”

● USAS-R design:
– Database is organized for “Operational” needs

● Highly normalized
● Strictly a data store, no business logic

– Security is only implemented in Domain Model

– Calculated fields only exist in Model

Don't Believe?

● Below is a “simple” query returning Vendors with Addresses and
Custom Fields:

–

–

–

–

–

–

● And is still largely useless:

– Cartesian product between Address and Custom fields

– “Correct Solution” would be involve sub-queries...

SELECT *
from USAS.VENDOR V
 JOIN USAS.VENDOR_ADDRESS VA ON V.ID = VA.VENDOR_ID
 JOIN USAS.ADDRESS A ON A.ID = VA.ADDRESSES_ID
 JOIN USAS.VENDOR_CUSTOMFIELD VCF ON VCF.VENDOR_ID = V.ID
 JOIN USAS.CUSTOM_FIELDS CFS ON CFS.ID = VCF.CUSTOMFIELDS_ID
 JOIN USAS.CUSTOMFIELD CF ON CF.CUSTOM_FIELDS_ID = CFS.ID
 JOIN USAS.CUSTOMFIELDDEFINITION CFD ON CFD.ID = CF.DEFINITION_ID

Still Don't Believe?

Reporting Services

● Exposes Data Model

– “Flattens” model for reporting needs

– Provides Calculated and reference fields:

● “total” of Purchase Order
● Expenditure Account code on PO Item

– Query methods:

● Form based
● Simplified “Advanced” Query Language

● Export formats:

– PDF, Excel, CVS, XML, JSON, etc

– REST (URL) style request for application integration

